0 0
Read Time:1 Minute, 15 Second

Introduction

  • Hype

  • Limitations

    • Bias

    • Adversarial attacks

  • Impact on developing economics and jobs

A realistic view

  • Goldilocks rule for AI:

    • Too optimistic: Sentient/AGI, killer robots

    • Too pessimistic: AI cannot do everything, so an AI winter is coming

      • as opposed to the past, AI is creating value today.

    • Just right: Can't do everything, but will transform industries

  • Limitations of AI

    • performance limitations. (limited data issues)

    • Explainability is hard (instructible)

    • Biased AI through biased data

    • Adversarial attacks

Discrimination/Bias

  •     

  • Biases

    • Bias against women and minorities in hiring

    • Bias against dark skinned people

    • banks offering hiring interest rates to minorities

    • reinforcing unhealthy stereotypes

  • Technical solutions

    • "Zero out" the bias in words

    • Use more inclusive data

    • More transparency and auditing processes

    • More Diverse workforce

Adversarial attacks

  • Minor perturbation to pixels can lead and AI to have a different B output.

  • Adversarial defenses

    • Defenses exist; incur some performance cost

    • There are some applications that will remain in an arms race.

Adverse uses of AI

  • DeepFakes, fakes can move faster than the truth can catch up

  • Undermining of democracy and privacy, oppressive surveillance

  • Generating fake comments

  • spam vs. anti-spam, fraud vs. anti fraud

AI and developing economies

  • AI will eliminate lower rung opportunities. The development of leapfrog opportunities will be required. Think how countries jumped to mobile phones, mobile payments, online education, etc.

  • US and china leading, but still a very immature space.

  • Use AI to strengthen country's vertical industries.

  • More public-private partnerships

  • invest in education

AI and Jobs

  • AI is automation on steroids.

  • Solutions

    • Conditional basic income: provide a safety net but incentivize learning

    • Lifelong learning society

    • Political solutions

Conclusion

  • What is AI?

  • Building AI projects

  • Building AI in your company

  • AI and society

Happy
Happy
0 %
Sad
Sad
0 %
Excited
Excited
0 %
Sleepy
Sleepy
0 %
Angry
Angry
0 %
Surprise
Surprise
0 %