Leading, Managing, Doing, and AI

1 0
Read Time:4 Minute, 25 Second  | February 27, 2024

by Shawn Harris

Today’s Tuesday Reading is by Shawn Harris, MOR Associates Executive Coach.  Shawn may be reached at [email protected] or via LinkedIn.

In most MOR programs, in the first workshop, on the first day, we support participants’ self-awareness in how they spend their precious resource of time. We do this through a framework that inventories everything we do into three categories: Leading, Managing, and Doing. As artificial intelligence comes at us all at full speed, we wonder how AI might impact the evolving leader and our Leading, Managing, and Doing. read more

Posted On :

5 Reasons Foundational Models Are The Future of AI

0 0
Read Time:2 Minute, 48 Second

We’ve all seen firsthand how technological advancements can drive profound changes in our economy. In this era of digital transformation, one of the most promising developments in artificial intelligence (AI) is the rise of foundational models, like GPT-4 from OpenAI. These large-scale machine learning models, trained on diverse Internet text, show an unprecedented versatility and are now being considered as foundational building blocks for a range of AI applications. In this blog post I will present 5 reasons why foundational models represent the future of AI. read more

Posted On :

A Framework for Assessing the Implications of Large Language Models on Society

1 0
Read Time:4 Minute, 15 Second

tl;dr – Large Language Models (LLMs) like GPT-4 are transforming our sociocultural interactions, pushing technological boundaries in AI, creating economic shifts through automation and new job roles, raising environmental concerns due to energy-intensive training, influencing political landscapes potentially through propaganda generation, and posing new legal questions about content responsibility and copyright. As we leverage these powerful models, it’s crucial to navigate these challenges responsibly, ethically, and sustainably, ensuring a future that aligns with our shared values. read more

Posted On :

My object detection and classification model, running on Raspberry Pi 4. Progress!

0 0

Read Time:33 Second

Fun little project his weekend, building a object detection and classification solution for less than $100. Though this pic only shows “person” and “book” classifications, the model can classify some 90 objects! The Tensorflow Lite model is running on a 4GB Raspberry Pi 4 w/ 128GB Sdcard. The camera is a Arducam, which I need to work on the resolution for but it didn’t impact the detection or classification, and ran at ~2.0 fps. Running on a Pi I have a give and take between model performance and accuracy, given the limited resources, but will push to see how resource hungry a model I can run on it.  More to come…

Share




Facebook



read more

Posted On :

Wondering what’s real about artificial intelligence? – BrainTrust Live! Episode 54

0 0

Read Time:27 Second

Wondering what’s real about artificial intelligence? Today on BrainTrust LIVE, we’re fortunate to have Cynthia Holcomb, founder/CEO of Prefeye, and Shawn Harris, Customer Partnerships & Strategy, SmartLens — two retail practitioners who are working with their clients on real A.I. solutions. They’ll give us the lowdown — more specifically, on how retailers can currently use AI for personalization, the limitations that are frustrating them at present, and what does the future holds.

Recording on Facebook: https://www.facebook.com/retailwire/videos/745383885894757/

Share




Facebook



read more

Posted On :

4: AI for Everyone – AI and Society – Notes

0 0

IntroductionHypeLimitationsBiasAdversarial attacksImpact on developing economics and jobsA realistic viewGoldilocks rule for AI:Too optimistic: Sentient/AGI, killer robotsToo pessimistic: AI cannot do everything, so an AI winter is comingas opposed to the past, AI is creating value today.Just right: Can't do everything, but will transform industriesLimitations of AIperformance limitations. (limited data issues)Explainability is hard (instructible)Biased AI through biased dataAdversarial attacksDiscrimination/Bias    BiasesBias against women and minorities in hiringBias against dark skinned peoplebanks offering hiring interest rates to minoritiesreinforcing unhealthy stereotypesTechnical solutions"Zero out" the bias in wordsUse more inclusive dataMore transparency and auditing processesMore Diverse workforceAdversarial attacksMinor perturbation to pixels can lead and AI to have a different B output.Adversarial defensesDefenses exist; incur some performance costThere are some applications that will remain in an arms race.Adverse uses of AIDeepFakes, fakes can move faster than the truth can catch upUndermining of democracy and privacy, oppressive surveillanceGenerating fake commentsspam vs. anti-spam, fraud vs. anti fraudAI and developing economiesAI will eliminate lower rung opportunities. The development of leapfrog opportunities will be required. Think how countries jumped to mobile phones, mobile payments, online education, etc.US and china leading, but still a very immature space.Use AI to strengthen country's vertical industries.More public-private partnershipsinvest in educationAI and JobsAI is automation on steroids.SolutionsConditional basic income: provide a safety net but incentivize learningLifelong learning societyPolitical solutionsConclusionWhat is AI?Building AI projectsBuilding AI in your companyAI and society

Posted On :

2: AI for Everyone – Building AI Projects – Notes

0 0

IntroductionStarting an AI projectWorkflow of projectsSelecting AI projectsOrganizing data and team for the projectsWorkflow of a machine learning projectHow do you build, say a speech recognition engineKey Steps:Collect Data: people saying "Alexa", and other wordsTrain model: learns A to B mapping... audio clip to "word"many iterationsDeploy the model: implement in to a smart speakerWill collect new data (get data back), to  maintain /update the modelHow do you build, say a self driving carKey steps:Collect Data: images - > positions of other cars, draw rectangles around carsTrain model: need to iterate and precisely identify carsDeploy model: may learn that golf carts are identified and positions well. keep iterating.Workflow of a data science projectoutput: actionable insightsOptimize a sales funnelKey steps:Collect Data: where are people coming from, time of day, machines type, etsc...Analyze the data: Iterate many time to get good insights insights from the data collected.Suggest hypotheses/actions: Deploy changes, re-analyze new data periodically.Optimizing a manufacturing lineKey steps:Collect Data: clay supplier, mixing time, ingredients, lead times, relative humidity, temperature, kiln duration, etc...Analyze the data: Iterate many time to get good insights insights from the data collected. Suggest hypotheses/actions: Deploy changes, re-analyze new data periodically.Every job function needs to learn how to use dataUse data to optimize workflows through data science based analysis, and to take on tasks with machine learning (remember less than a second), Inputs (A) to Output (B).From Sales, recruiting, marketing, to agriculture, and beyond DS and ML are having huge impactsHow to choose an AI projectBring together a cross-functional team knowledgeable in AI, plus domain experts.Brainstorming framework:Think about automating "tasks," vs automating "jobs."what are the main drivers of business values?What are the main pain point in your business?Note: you can make progress without big dataHaving more data almost never hurtsData makes some business [Google, Facebook, Netflix, Amazon] defensible.With small datasets, you can still make progress. The amount of data you need is problem dependant.Due diligence on projectWhat AI can do + Valuable for your businessTechnical diligenceCan AI system meet desired performance (e.g. accuracy, speed, etc)How much data is need to meet performance goalsEngineering timlineBusiness diligenceCurrent business: Lower costsCurrent business: Increase revenue ( getting more people to check out)New business: New product or business*Ethical diligence*money vs impact on societyBuild vs. buyML projects can be in-house or outsourcedDS projects are more commonly in-houseSome things will be industry standard, avoid building those."Don't sprint in front of a train."some times it makes sense to adopt another's platform or approach than to build your own. resource constraints, capability constraints...Working with an AI teamSpecify your acceptance criteriaGoal: defects with 95% accuracy...How do you measure accuracyTest Set (n1000): labelled training dataset to measure performance. Training Set: Pictures with labelsLearn mapping from A to BTest Set: Another data set to test the mappings. Often more than 1 test set will be requested.Pitfall of expecting 100% accuracy. Discuss with AI engineers what's reasonable.Limitations of MLInsufficient dataMislabeled dataAmbiguous labelsTechnical Tools for AI teamsCPU vs. GPU [Great for deep Learning/Neural Networks] NvidiaCloud vs. On-prem, ....Edge [Processor, where data is collected.]

Posted On :

#010: This Game is Not One-Dimensional, You Have to Face the Customer with Shawn Harris, Global Innovation Strategy Lead, Zebra Technologies.

0 0

In this episode of The IoClothes Podcast, we speak with Shawn Harris, Global Innovation Strategy Lead for Zebra Technologies. The reality is, innovative products don’t just sell themselves and companies aren’t composed of just designers, developers and engineers. Someone has to interface with the customer, and keep the ship sailing along a strategic path, which includes profitability (that’s if you want to stay in business). Today, we shift gears and talk a bit about the struggles of retail, the importance of differentiating yourself in the marketplace and how are current relationship with MS Excel may be a sign of the future!

Posted On :