

Tactical Decisions in Retail

*Time-dependent Decisions

HAR	HARVARD BUSINESS SCHOOL	Page 3

Snapshot of Rue La La's Website

Challenge

How can we combine predictive analytics to predict demand with prescriptive analytics to make tactical decisions?

Data-Driven Approach

Internal Data Sources	External Data Sources
Historical Sales	Competitor's Pricing
Other ERP Data	Social Media
Clickstream / Page Views	Google Trends
...	...

Page 4

Rue La La's Operations

Sell-Through Distribution of New Products

Page 8

Approach

Goal: Maximize expected revenue of new styles

| Demand Forecasting
 Main Challenge: |
| :--- | :--- |
| - Predicting demand for
 styles that have never
 been sold before |
| Solution Techniques:
 Sredictive analytics
 (machine learning -
 regression \& clustering) |

Regression Trees:

Illustration and Intuition

Why regression trees?

- Use features to partition styles sold in past, and only use relevant styles to predict demand
- Allow for non-standard price/demand relationship

HARVARD
business school

Features Included in Regression

- Tested several machine learning techniques - Regression trees performed best

8. $|$| HARVARD | |
| :--- | :--- |
| BUSINESS SCHOOL | Page 10 |

Approach

Goal: Maximize expected revenue of new styles

Complexity

- Three of the features used to predict demand are associated with pricing
- Price
$-\%$ Discount $=\frac{1-\text { Price }}{\text { MSRP }}$
- Relative Price of Similar Styles =

$$
\begin{array}{|c}
\text { Price } \\
\hline \text { Avg. Price of Similar Styles } \\
\hline
\end{array}
$$

- Pricing must be optimized concurrently for all similar styles

HARVARD
BUSINESS SCHOOL
Page 13

Key Observation

- Demand depends only on the average price of competing styles in an event, as opposed to each style's individual price
- Reformulated multi-product price optimization model with far fewer variables using this key observation
- Developed efficient algorithm to solve on daily basis
- Average run-time ~ 1 hour

Hag.	HARVARD BUSINESS SCHOOL	Page 15

Pricing Decision Support Tool

Naïve Approach

- Set of possible prices:
- Prices must end in $\$ 4.90$ or $\$ 9.90$
- Ex: \{\$24.90, \$29.90, \$34.90, \$39.90\}
- For each combination of possible prices assigned to each style, calculate expected revenue
- Requires predicting demand for each style given each competing style's price
- Computationally intractable...could take months to solve

| Hag | HARVARD
 BUSINESS SCHOOL |
| :--- | :--- | IMPLEMENTATION \& IMPACT

Field Experiment

- Test questions:

1. Would implementing model recommended price increases cause a decrease in sales?
2. What would be the associated revenue impact?

- Set lower bound on price = legacy price (cost + markup)
- Model only recommends price increases (or no change)
- Identified $\sim 6,000$ styles where tool recommended price increases
- 5-month field experiment

(4)	HARVARD BUSINESS SCHOOL	Page 18

How can we do even better?

- You are a new online retailer who sells a fashionable purse during the Spring 2016 season
- How would you price this purse?
- Prices that you're considering: $\{\$ 100, \$ 150\}$
- You don't know customer demand at each price
- You have unlimited inventery limited inventory
- Tradeoffs
- Exploration vs. Exploitation
- Explore at the cost of running out of inventory

Harg	HARVARD BUSINESS SCHOOL	Page 23

Impact on Revenue
\% Increase in Revenue with 90% Confidence Interval

You are a new online retailer who sells a fashionable purse during the Spring 2016 season

- How would you price this purse?
- Prices that you're considering: $\{\$ 150, \$ 200\}$
- You don't know customer demand at each price
- You have unlimited inventory
- Exploration vs. Exploitation Tradeoff
- "Explore" by offering a variety of prices to learn demand
- "Exploit" this information to choose the best price (max \$\$)

为品	HARVARD BUSINESS SCHOOL	Page 22

Opportunities

- Use data to develop innovative machine learning \& optimization techniques to best address these challenges - Combination of predictive and prescriptive analytics

[^0]
[^0]: Page 24

